INVESTIGATIONS OF THE MECHANISM OF NUCLEOSIDE SYNTHESIS. I. ¹³C-NMR STUDIES OF DIHYDRO-<u>s</u>-TRIAZINE-SnC1, COMPLEXES.

W. Wierenga* and H.I. Skulnick

Experimental Chemistry Research, The Upjohn Company Kalamazoo, Michigan 49001, USA

¹³C-NMR has been employed to demonstrate and define the nature of Sn^{IV} octahedral complexes of bissilyl triazines as a further investigation of nucleoside condensation mechanisms.

We have been intrigued by some observations relating to earlier chemistry from this laboratory involving the Lewis acid mediated condensation of the silylated dihydro-s-triazine $\underline{1}$ with the deoxyribosyl chloride $\underline{2}$ in the synthesis of the antiviral, antibiotic dihydro-5-azathymidine, $\underline{3}$. These observations included (1) that the nucleoside anomeric ratio changed as a function of reaction temperature, (2) that the ratio of Lewis acid "catalyst" (SnCl₄) to triazine was approximately 1:2 for optimum yield, and (3) that deoxyribosyl chloride decomposition was not observed when the triazine and SnCl₄ were premixed in the optimum ratio. We are independently examining several aspects of this chemistry and report herein our findings involving the interaction of SnCl₄ with 1.

We have examined the changes which occur in the ¹³C-NMR spectrum of the bissilyl triazine, ¹ <u>1</u>, upon incremental addition of SnCl₄ in CD₉CN and CDCl₉.^{2,3} The results for CD₉CN are tabulated in Table I and a visual representation of the CDCl₉ case is exhibited in Figure A. To unambigously substantiate the assignments for C₂ and C₄, the ¹³C₂-enriched triazine was prepared⁴, silylated, and subjected to the same complexation study with SnCl₄ in CD₉CN.

Several immediate observations are (1) ultimately all shifts are downfield in both solvents,⁶ (2) multiple peaks develop during initial additions of SnCl₄ which then condense ultimately to four new carbon resonances, (3) relaxation times of C_2 and C_4 tend to shorten relative to C_6 and NCH₃ as more SnCl₄ is added, and (4) no changes occur after the addition of approximately 0.4 equivalents of SnCl₄ in CDCl₃ and 0.55 equiv. in CD₃CN. The question arises then regarding the nature of this possible complexation phenomenon in respect to stoichiometry, geometry, and liganding site on the triazine ring.

The data contained in the Table and Figure, and the above observations, strongly implicate a 2 triazine (<u>1</u>): 1 SnCl₄ stoichiometry since no spectral shifts are noted after approximately 0.5 equiv.⁷ of "catalyst." Apparently two new species $(a_1b_1c_1d_1 \text{ and } a_2b_2c_2d_2)$ are formed and co-occur with the starting material when SnCl₄ is the limiting reagent. As more SnCl₄ becomes available, <u>1</u> is completely converted through $a_1b_1c_1d_1$ to $a_2b_2c_2d_2$. In fact, one can prepare the 2:1 complex in

3631

chloroform by evaporation in vacuo to a white solid which, after washing with hexane, exhibits identical ¹³C-NMR resonances as in Table 1 (0.55 eq.), identical condensation chemistry with $\underline{2}$ to give 3, and appears to be less moisture sensitive than either 1 or SnCl₄.⁸

To explain the 2:1 stoichiometry an octahedral complex, 5, is suggested. The resulting 2:1 complex exhibits only four resonances similar to but downfield from <u>1</u>, indicative of *trans* geometry with D_{4h} symmetry. There are a number of precedents for the 4d¹⁰ Sn^{1V} tetrahalides to form 1:2 adducts with basic ligands such as pyridine, tertiary amines, and phosphines.⁹⁻¹³

The rationale for the structure of the intermediate (a_1-d_1) could possibly arise by advocating (1) an initial 1:1 complex (trigonal bipyramid for example), or (2) a trigonally or tetragonally distorted cis octahedral complex accounting for both a_1-d_1 , and a_2-d_2 , or (3) a 1:1 complex (0_h, with halogen bridging), or (4) a cis octahedral complex (4) in equilibrium with 5. First, although we cannot disprove it, it would seem unlikely that a 1:1 complex would be the intermediate when there is initially a large excess of ligand and the trans-octahedral (2:1) complex already exists at the early stages of SnCl. addition.⁸ Secondly, the possibility of a distorted *cis*-octahedral complex exhibiting the assymmetry necessary to generate the a1-d1 peaks and the a2-d2 peaks, which would then coalesce (through re-arrangement) to the a_2-d_2 peaks only of the trans-octahedron, likewise appears unlikely since one would predict such a structure would actually generate two sets of resonances, both different from a_2-d_2 . Therefore, a reasonable conclusion is that we are witnessing an equilibrium situation between starting material, a cis-octahedral complex (4), and a final trans complex (5).14,15 In ancillary support of this is the observation from Table I that the major chemical shift change occurs in going from intermediate-4 to 5 (4: $\Delta\delta$ -C₂, 1.45; C₄, 1.04; C₆, 2.25; NCH3, -0.14; <u>5</u>: C2, 4.8; C4, 4.8; C6, 3.2; NCH3, 1.9 relative to <u>1</u>) suggesting a partial shielding effect in the intermediate consistant with neighboring (cis) ligands.

The phenomenon of $4 \xrightarrow{\text{SnCl}_4} 5$ is supported by Figure B. It is evident that as 1 becomes the limiting reagent there is a more rapid, concommitant change in the ratio of 5 to 4. (This also implies that k₁ and k₃ are quite close, *i.e.*, 4 favorably competes with 1 for SnCl₄.) It seems plausible that the conversion of *cis* to *trans* O_h geometry, as a function of added SnCl₄, results from a *trans*-labilizing effect¹⁶ of the *cis* octahedron to the more thermodynamically stable *trans*, <u>B</u>.

The nearly equivalent downfield shifts of C_2 and C_4 might initially suggest N₃ complexation on ligand <u>1</u> since this would involve an equidistant positioning of Sn^{IV} to C_2 and C_4 , analoguous to pseudocontact shifts with lanthanides. However, if one examines the possible canonical structures available from either N₁ or N₃ "protonation" with SnCl₄, it is apparent that electron density can only be influenced (lowered) at <u>both</u> C₂ and C₄ by N₁ complexation (consistent with <u>downfield</u>, <u>de</u>shielded shifts).

These data support the proposition that the reactant in the condensation of $\underline{1}$ with $\underline{2}$ is in fact the *trans*-0_h complex, $\underline{5}$, with N₁ as the suggested complexation site. These results then address two of the three observations noted at the beginning of this communication. The possible implications

Equivalents of SnCl ₄	0	0.2	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.8	1.0	1.5	2.0	Δ	∆, CDCI ₃
C ₂	42.43	47.30 43.88 42.43 ^c	47.28 43.89 42.42	47.26 43.88 42.40	47.25 43.88 42.38	47.21 43.88	47.22 43.90	47.21	47.24	47.31	47.33		47.38	4.8	4.9
	39.00	43.75 40.06 39.02	43,73 39.98 38.99	43.69 40.01 38.97	43.69 39.96 38.96	43.64 39.93	43.65 39.95	43.63	43.66	43.74	43.75		43.81	4.8	4.4
 C_6	59. 14	59.14 56.89 55.91	59.16 56.96 56.00	59.06 56.89 55.88	59.14 56.94 55.96	59.10 56.93 55.91	56.90 55.87	56.88 55.87	55.95	55.90	55.89	55.83	55.80	3.2	3.3
N-CH3	85.41	83.64 85.43 85.55	83.65 85.41 85.58	83.45 85.26 85.44	83.60 85.40 85.54	83.46 85.31 85.46	83.42 85.42	83.39 85.35	83.55	83.49	83.51	83.42	83.37	1.9	2.1

TABLE I:	¹³ C-NMB	SHIFTS*	OF	1	UPON	ADDITION	OF	SnCL.	b
IADEE I.	0-100011	01111 10	.	<u> </u>	01014	ADDITION	U ,		

a) Reported relative to ¹³CN of the CD₂CN solvent which was approximately 117 ppm (± 0.5 ppm), relative to TMS, throughout the additions of SnCl₄ (actually the values for C₈ and N-CH₃ are negative).

b) Concentration of substrate was 1M in CD₃CN.

c) The "boxed" values indicate the predominate peak(s).

	a= C ₂	b= C4	c= C ₆	d= N–CH ₃
SnCl4 (eq.)		CDCI3		
a2 b2 1.7			c2	d2
0.4			c2	d2
0.3 a1 a b b2 b1 a2			c c1 c2	d2 d1
$\begin{array}{c} a \\ 0.2 \\ b^2 \\ a^2 \\ a^2 \\ b^2 \\ b$			c1 c2	d2 d1
0.0 a b			C	d

Figure A. ¹³C-NMR Shifts of Bis(trimethylsilyl)triazine $a=C_2$ $b=C_4$ c=

of this for Lewis-acid assisted nucleoside synthesis in general, extension of this to other pyrimidines and triazines, and examination of other facets in the conversion of $1 + 2 \rightarrow 3$ are currently under investigation

References

- 1. H.I. Skulnick, J. Org. Chem., 43 (1978).
- All spectra were obtained on a Varian CFT-20 NMR spectrometer with a 1.023 sec. acquisition time, pulse delay 3.00 sec. Acetonitrile-d3 was dried over activated 3A molecular seives and chloroform-d over 4A seives. The process of preparing samples and solutions for NMR was done in an argon-filled dry box. H.F. Vorbrüggen, <u>et al.</u>, in "Chem. and Biol. of Nucleosides and Nucleotides," p. 251-262 (ed. R.E. Harmon et al.), Academic Press, N.Y. (1978) report preliminary complexation studies of Me₃SiSO₃CF₃ and SnCl₄ with several pyridines and a pyrimidine.
- A.K. Bose and P.R. Srinivasan, Tet. Letters, 1571 (1975) report TiCl4 induced shifts of ketones. 3.
- 4. This was prepared according to the procedure of Piskala and Gut³ beginning with ¹³C-urea (90%).

HCO2Et, pH 5.5

Modification involved the use of NaBH4CN conjugate reduction at pH 5.5 in methanol (room temp., 95% yield) in place of catalytic hydrogenation. The experiments were performed on material diluted to 5% ¹³C-enrichment.

- 5. A. Piskala and J. Gut, Coll. Czech. Chem. Commun., 26, 2519 (1961).
- 6. This fact strongly precludes the possibility of desilylation occurring since the unsilylated triazine precursor exhibits C2 (37.18) and C4 (35.66) with 0.6 eq. of SnCl4 and further addition of SnCl4 causes decomposition. Also little change occurs with the TMS-carbons of 1 (not included in Table I or Figure A) during the addition of SnCl4.
- 7. Acetonitrile is known to weakly complex" with SnCl₄, a fact which is consistent with a slightly more rapid (within experimental error) attainment of a fully complexed state in CDCl3 than in CD₃CN.
- 8. Acceptable C,H,N, Cl analysis obtained allowing for approx. 0.5% H_2O (determined by K.F.) accruel during weighing/combustion. Interestingly, if one adds 2 mmole SnC14 to 1 mmole $\underline{1}$, analysis indicates approx. 1:1 ratio. Coupling this with the observation that two new, minor peaks appear only next to C. and NCH, in the ¹³C-NMR spectrum after 0.8 eq. SnCl. and beyond, suggests a weak, secondary complexation of SnCl₄ with an already complexed 1, perhaps in a polymeric, $0_{\rm h}~{\rm Sn^{IV}}$ array.
- 9. I.R. Beattie and L. Rule, <u>J. Chem. Soc.</u>, 3267 (1964).
- 10. J.E. Fergusson, W.R. Roper and C.J. Wilkins, ibid., 3716 (1965).
- 11. S.S. Sandhu and J.C. Bhatia, <u>Ind. J. Chem.</u>, <u>9</u>, 70 (1971). 12. S.A.A. Zaidi and T.A. Khan, <u>ibid</u>, 15A, 313 (1977).
- 13. J. -M. Dumas and M. Gomel, Bull. Soc. Chim. Fr., 1885 (1974).
- 14. Since ligand 1 affords two possible binding sites with SnCl4, alternative explanations for intermediate a1b1c1d1 might involve isomerization from N1 binding to N3, or vice versa. However, any possible scenario envisioned would appear to require a higher multiplicity of resonances than observed.
- 15. The *cis*-octahedron has lower symmetry (C_{2y}) than the *trans*, a fact substantiated by a more complex IR spectrum", however, the assymetry arises from the equivalency of the four chlorides expanding to two different chlorines (two sets of two chlorines) and thus the introduction of cis ligands should still require these two ligands to appear equivalent.
- 16. F.A. Cotton and G. Wilkinson, Adv. Inorganic Chemistry, p. 175-8, Wiley Interscience, New York, 1967.

(Received in USA 12 March 1979)